抗病小体,探索植物免疫新途径
□ 柴继杰
字数:2421
2025-01-22
版名:文化
植物抗病基因能有效保护农作物免受病虫害侵害,显著减少化肥和农药使用。因此,通过对植物免疫抗病蛋白进行调控实现绿色防控显得尤为关键。抗病小体,这一由我国科学家提出的概念,迅速获得了国内外专家同行的广泛认可和高度评价。
抗病蛋白,植物的免疫系统
植物和人类一样,经常会受到各种病原体侵染。自人类进入农业社会以来,植物疾病始终是农业生产中的重大难题。统计数据显示,这些病原体引发的疾病会使粮食作物产量减少约11%至30%,对全球农业生产造成严峻挑战。
植物不能像动物一样自由移动,也无法主动避开病原微生物,但植物在长期进化过程中,发展出了复杂的多层次免疫系统来抵御病原体。在病原体入侵植物时,植物细胞膜上的模式识别受体(PRR)会识别病原菌的保守模式分子,从而启动第一层免疫反应。这种反应具有广谱性,可防御大多数病原体的侵染。与此同时,病原体在不断进化,部分病原体能通过三型分泌系统分泌致病因子进入细胞内,致使第一层免疫反应失效,从而无法有效启动第一层免疫反应,病原体就可以有效扩增繁殖并导致疾病的发生。
庆幸的是,在病原体进化的同时,植物也相应进化出了第二层免疫反应——被病原体入侵细胞含有特异抗病蛋白,可以识别病原体分泌的效应蛋白,启动一系列更为特异且强烈的免疫反应,进而消灭病原体。为了阻止病原体进一步扩散,第二层免疫反应甚至会以牺牲植物局部细胞的代价,一举消灭病原体。
1905年,英国小麦遗传学家比芬首次在小麦中发现了抗病基因,这也标志着植物抗病性遗传研究的开始。1947年,美国学者哈罗德·H·弗洛尔在研究亚麻锈病抗性过程中,提出植物抗病领域的“基因对基因”假说。针对宿主的每一个抗病性基因,病原菌方面也相应存在一个决定致病性基因,这为后续寻找病原菌的致病因子和植物抗病蛋白奠定了理论基础。其中,绝大多数植物抗病蛋白为NLR型抗病蛋白。1994年,科学家成功克隆了第一个NLR抗病基因。随着分子生物学技术的发展,至今已经克隆了至少200个NLR抗病基因,该类NLR抗病基因可以产生NLR抗病蛋白,并广泛应用于作物的抗病育种。
抗病小体,冉冉升起的学术“新星”
NLR蛋白在不同生命界(包括细菌、植物和动物)中广泛存在,并参与免疫过程。植物的NLR蛋白通过识别病原微生物分泌到宿主细胞内的特异性致病效应因子,启动免疫反应,这一特异的对应识别机制是植物免疫的核心,它通过激活下游信号传导通路,增强植物对病害的抵抗力,从而有效保护植物健康。
鉴于植物面临的病原体种类繁多,且每个病原体可携带多种致病因子,植物进化出了大量特异的抗病蛋白以识别这些因子,例如拟南芥约有 150个、水稻约有450个、苹果约有750个NLR 抗病蛋白。但由于植物NLR 抗病蛋白表达量普遍较低、分子量大且构象多变,对其完整的三维结构解析一直是植物免疫学领域的重大挑战。同时,由于对植物NLR的作用机制尚不清楚,植物领域对这一类蛋白的认识主要借鉴动物中研究较清楚的凋亡相关蛋白Apaf1的研究结论,推测NLR抗病蛋白可能需要通过中间接头蛋白介导来发挥抗病功能。柴继杰团队2004年开始聚焦动植物免疫抗病蛋白研究,2013年到2018年,相继解析了动物NLRC4免疫蛋白不同状态的结构,为推动植物免疫蛋白结构解析提供了线索。2015年,柴继杰与中国科学院植物遗传发育所研究员周俭民合作,开始研究植物NLR抗病蛋白ZAR1的结构与功能。经过不懈努力,2019年在清华大学王宏伟电镜研究组的协助下,成功解析了植物第一个完整抗病蛋白ZAR1三种不同状态的结构:抑制态、中间态和五聚化的激活态结构。这一突破性成果首次揭示了植物CNL类抗病蛋白在没有病原菌存在时,是如何通过核苷酸和多结构域之间的相互作用维持抑制状态的,同时揭示了在病原菌效应因子的作用下,NLR变构和寡聚化组装的完整分子机制。这是自1994年第一个NLR蛋白克隆以来,植物抗病领域取得的重大突破。
五聚化的激活态结构像一个风火轮,也像一朵紫荆花。激活态结构形成了中空的漏斗状,通过对结构的详细分析,提示它可能是通过影响植物细胞膜的完整性来启动抗病反应的。该发现对植物抗病研究领域具有开创性意义,因为它挑战了传统观念,即植物NLR识别效应蛋白并寡聚化后可能招募其他接头蛋白以启动防御反应。进一步的功能研究提示,植物抗病蛋白寡聚化后可能直接干扰细胞膜的稳定性,从而触发下游的抗病反应。NLR抗病蛋白的这一活化模式完全不同于动物中凋亡小体或者炎症小体需要通过接头蛋白来激活下游通路的模式。
2021年,柴继杰团队进一步在植物中确认ZAR1抗病蛋白确实可以通过在细胞膜上形成钙离子通道或孔道,来触发植物的免疫反应。这项开创性的研究将植物抗病蛋白与重要的生物第二信使——钙离子联系了起来,为植物抗病机制的研究开辟了新方向。
钙信号,植物抗病的共性起点
伴随着第一个ZAR1抗病小体的解析,人们对于植物免疫过程有了全新认识。如果ZAR1抗病小体通过形成钙离子通道/孔道来激活免疫反应的机制,在诸如小麦这样的单子叶植物中的N LR也具有广谱性,那么对于粮食作物的抗病育种研究将具有重大影响,对中国这样的农业大国意义尤为深远。
针对此问题,柴继杰团队与合作伙伴一起针对小麦中的抗病蛋白Sr35与小麦秆锈病病原菌的效应因子AvrSr35形成的复合物展开研究,并以冷冻电镜解析了其活化状态结构。研究发现,与ZAR1抗病小体类似,Sr35抗病蛋白通过其 LRR 结构域(一种蛋白质结构域)直接识别效应蛋白,并形成五聚化的抗病小体。柴继杰团队和中国科学院遗传与发育生物学研究所的陈宇航课题组合作,证实了Sr35抗病小体确实能够在质膜上形成通透钙离子的离子通道/孔道从而发挥免疫抗病作用。这些研究清晰表明,不同单双子叶来源的植物CNL类抗病蛋白都是通过形成抗病小体,在细胞膜上形成钙离子通道/孔道,从而通过钙信号激活植物的免疫反应。在与德国马克斯·普朗克植物育种研究所的合作中,柴继杰团队揭示了Sr35抗病小体在植物细胞和植物体内都可以引起抗病作用。进一步通过实验表明,仅仅通过替换抗病小体LRR结构域就可以改变其效应蛋白的识别特性,进而扩展这些NLR蛋白的抗病谱,这为粮食作物的抗病育种和作物保护提供了一种简单易行的新策略。
(据《光明日报》,有删节)
抗病蛋白,植物的免疫系统
植物和人类一样,经常会受到各种病原体侵染。自人类进入农业社会以来,植物疾病始终是农业生产中的重大难题。统计数据显示,这些病原体引发的疾病会使粮食作物产量减少约11%至30%,对全球农业生产造成严峻挑战。
植物不能像动物一样自由移动,也无法主动避开病原微生物,但植物在长期进化过程中,发展出了复杂的多层次免疫系统来抵御病原体。在病原体入侵植物时,植物细胞膜上的模式识别受体(PRR)会识别病原菌的保守模式分子,从而启动第一层免疫反应。这种反应具有广谱性,可防御大多数病原体的侵染。与此同时,病原体在不断进化,部分病原体能通过三型分泌系统分泌致病因子进入细胞内,致使第一层免疫反应失效,从而无法有效启动第一层免疫反应,病原体就可以有效扩增繁殖并导致疾病的发生。
庆幸的是,在病原体进化的同时,植物也相应进化出了第二层免疫反应——被病原体入侵细胞含有特异抗病蛋白,可以识别病原体分泌的效应蛋白,启动一系列更为特异且强烈的免疫反应,进而消灭病原体。为了阻止病原体进一步扩散,第二层免疫反应甚至会以牺牲植物局部细胞的代价,一举消灭病原体。
1905年,英国小麦遗传学家比芬首次在小麦中发现了抗病基因,这也标志着植物抗病性遗传研究的开始。1947年,美国学者哈罗德·H·弗洛尔在研究亚麻锈病抗性过程中,提出植物抗病领域的“基因对基因”假说。针对宿主的每一个抗病性基因,病原菌方面也相应存在一个决定致病性基因,这为后续寻找病原菌的致病因子和植物抗病蛋白奠定了理论基础。其中,绝大多数植物抗病蛋白为NLR型抗病蛋白。1994年,科学家成功克隆了第一个NLR抗病基因。随着分子生物学技术的发展,至今已经克隆了至少200个NLR抗病基因,该类NLR抗病基因可以产生NLR抗病蛋白,并广泛应用于作物的抗病育种。
抗病小体,冉冉升起的学术“新星”
NLR蛋白在不同生命界(包括细菌、植物和动物)中广泛存在,并参与免疫过程。植物的NLR蛋白通过识别病原微生物分泌到宿主细胞内的特异性致病效应因子,启动免疫反应,这一特异的对应识别机制是植物免疫的核心,它通过激活下游信号传导通路,增强植物对病害的抵抗力,从而有效保护植物健康。
鉴于植物面临的病原体种类繁多,且每个病原体可携带多种致病因子,植物进化出了大量特异的抗病蛋白以识别这些因子,例如拟南芥约有 150个、水稻约有450个、苹果约有750个NLR 抗病蛋白。但由于植物NLR 抗病蛋白表达量普遍较低、分子量大且构象多变,对其完整的三维结构解析一直是植物免疫学领域的重大挑战。同时,由于对植物NLR的作用机制尚不清楚,植物领域对这一类蛋白的认识主要借鉴动物中研究较清楚的凋亡相关蛋白Apaf1的研究结论,推测NLR抗病蛋白可能需要通过中间接头蛋白介导来发挥抗病功能。柴继杰团队2004年开始聚焦动植物免疫抗病蛋白研究,2013年到2018年,相继解析了动物NLRC4免疫蛋白不同状态的结构,为推动植物免疫蛋白结构解析提供了线索。2015年,柴继杰与中国科学院植物遗传发育所研究员周俭民合作,开始研究植物NLR抗病蛋白ZAR1的结构与功能。经过不懈努力,2019年在清华大学王宏伟电镜研究组的协助下,成功解析了植物第一个完整抗病蛋白ZAR1三种不同状态的结构:抑制态、中间态和五聚化的激活态结构。这一突破性成果首次揭示了植物CNL类抗病蛋白在没有病原菌存在时,是如何通过核苷酸和多结构域之间的相互作用维持抑制状态的,同时揭示了在病原菌效应因子的作用下,NLR变构和寡聚化组装的完整分子机制。这是自1994年第一个NLR蛋白克隆以来,植物抗病领域取得的重大突破。
五聚化的激活态结构像一个风火轮,也像一朵紫荆花。激活态结构形成了中空的漏斗状,通过对结构的详细分析,提示它可能是通过影响植物细胞膜的完整性来启动抗病反应的。该发现对植物抗病研究领域具有开创性意义,因为它挑战了传统观念,即植物NLR识别效应蛋白并寡聚化后可能招募其他接头蛋白以启动防御反应。进一步的功能研究提示,植物抗病蛋白寡聚化后可能直接干扰细胞膜的稳定性,从而触发下游的抗病反应。NLR抗病蛋白的这一活化模式完全不同于动物中凋亡小体或者炎症小体需要通过接头蛋白来激活下游通路的模式。
2021年,柴继杰团队进一步在植物中确认ZAR1抗病蛋白确实可以通过在细胞膜上形成钙离子通道或孔道,来触发植物的免疫反应。这项开创性的研究将植物抗病蛋白与重要的生物第二信使——钙离子联系了起来,为植物抗病机制的研究开辟了新方向。
钙信号,植物抗病的共性起点
伴随着第一个ZAR1抗病小体的解析,人们对于植物免疫过程有了全新认识。如果ZAR1抗病小体通过形成钙离子通道/孔道来激活免疫反应的机制,在诸如小麦这样的单子叶植物中的N LR也具有广谱性,那么对于粮食作物的抗病育种研究将具有重大影响,对中国这样的农业大国意义尤为深远。
针对此问题,柴继杰团队与合作伙伴一起针对小麦中的抗病蛋白Sr35与小麦秆锈病病原菌的效应因子AvrSr35形成的复合物展开研究,并以冷冻电镜解析了其活化状态结构。研究发现,与ZAR1抗病小体类似,Sr35抗病蛋白通过其 LRR 结构域(一种蛋白质结构域)直接识别效应蛋白,并形成五聚化的抗病小体。柴继杰团队和中国科学院遗传与发育生物学研究所的陈宇航课题组合作,证实了Sr35抗病小体确实能够在质膜上形成通透钙离子的离子通道/孔道从而发挥免疫抗病作用。这些研究清晰表明,不同单双子叶来源的植物CNL类抗病蛋白都是通过形成抗病小体,在细胞膜上形成钙离子通道/孔道,从而通过钙信号激活植物的免疫反应。在与德国马克斯·普朗克植物育种研究所的合作中,柴继杰团队揭示了Sr35抗病小体在植物细胞和植物体内都可以引起抗病作用。进一步通过实验表明,仅仅通过替换抗病小体LRR结构域就可以改变其效应蛋白的识别特性,进而扩展这些NLR蛋白的抗病谱,这为粮食作物的抗病育种和作物保护提供了一种简单易行的新策略。
(据《光明日报》,有删节)